Irrational Power Series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series of Error Terms for Rational Approximations of Irrational Numbers

Let pn/qn be the n-th convergent of a real irrational number α, and let εn = αqn−pn. In this paper we investigate various sums of the type ∑ m εm, ∑ m |εm|, and ∑ m εmx m. The main subject of the paper is bounds for these sums. In particular, we investigate the behaviour of such sums when α is a quadratic surd. The most significant properties of the error sums depend essentially on Fibonacci nu...

متن کامل

A Toric Ring with Irrational Poincar E-betti Series

{ We show that there exists a toric curve in P 8 , whose homogeneous coordinate ring has a presentation with 12 quadratic relations and whose Poincar e-Betti series is irrational. The example was found by a computer search, aiming at a homological classiication of those toric curves that have a quadratic presentation in P n?1 for n 9. Some other consequences of this search are also presented. U...

متن کامل

Uniserial modules of generalized power series

Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.

متن کامل

Logarithmic-Exponential Power Series

We use generalized power series to construct algebraically a nonstandard model of the theory of the real eld with exponentiation. This model enables us to show the undeenability of the zeta function and certain non-elementary and improper integrals. We also use this model to answer a question of Hardy by showing that the compositional inverse to the function (log x)(log log x) is not asymptotic...

متن کامل

On Interpolating Power Series

We derive a simple error estimate for equally spaced, polynomial interpolation of power series that does not require the uniform bounds on derivatives of the Cauchy remainder. The key steps are expressing Newton coefficients in terms of Stirling numbers S(i, j) of the second kind and applying the concavity of lnS(i, j).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1961

ISSN: 0002-9939

DOI: 10.2307/2034234